Exercise 2.4.7

Solve the heat equation

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}
$$

[Hints: It is known that if $u(x, t)=\phi(x) G(t)$, then $\frac{1}{k G} \frac{d G}{d t}=\frac{1}{\phi} \frac{d^{2} \phi}{d x^{2}}$. Appropriately assume $\lambda>0$. Assume the eigenfunctions $\phi_{n}(x)$ satisfy the following integral condition (orthogonality):

$$
\int_{0}^{L} \phi_{n}(x) \phi_{m}(x) d x= \begin{cases}0 & n \neq m \\ L / 2 & n=m\end{cases}
$$

subject to the following conditions:
(a) $u(0, t)=0, u(L, t)=0, u(x, 0)=f(x)$
(b) $u(0, t)=0, \frac{\partial u}{\partial \mathrm{x}}(L, t)=0, u(x, 0)=f(x)$
(c) $\frac{\partial u}{\partial x}(0, t)=0, u(L, t)=0, u(x, 0)=f(x)$
(d) $\frac{\partial u}{\partial \mathrm{x}}(0, t)=0, \frac{\partial u}{\partial x}(L, t)=0, u(x, 0)=f(x)$ and modify orthogonal condition [using Table 2.4.1.]
[TYPO: These x's should be italicized. Also, the square bracket is not paired.]

Solution

Part (a)

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<L, t>0 \\
& u(0, t)=0 \\
& u(L, t)=0 \\
& u(x, 0)=f(x)
\end{aligned}
$$

The heat equation and its associated boundary conditions are linear and homogeneous, so the method of separation of variables can be applied. Assume a product solution of the form $u(x, t)=X(x) T(t)$ and substitute it into the PDE

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}} \quad \rightarrow \quad \frac{\partial}{\partial t}[X(x) T(t)]=k \frac{\partial^{2}}{\partial x^{2}}[X(x) T(t)]
$$

and the boundary conditions.

$$
\begin{array}{rlllll}
u(0, t)=0 & \rightarrow & X(0) T(t)=0 & & \rightarrow & X(0)=0 \\
u(L, t)=0 & \rightarrow & X(L) T(t)=0 & & \rightarrow & X(L)=0
\end{array}
$$

Now separate variables in the PDE.

$$
X \frac{d T}{d t}=k T \frac{d^{2} X}{d x^{2}}
$$

Divide both sides by $k X(x) T(t)$. Note that the final answer for u will be the same regardless which side k is on. Constants are normally grouped with t.

$$
\underbrace{\frac{1}{k T} \frac{d T}{d t}}_{\text {function of } t}=\underbrace{\frac{1}{X} \frac{d^{2} X}{d x^{2}}}_{\text {function of } x}
$$

The only way a function of t can be equal to a function of x is if both are equal to a constant λ.

$$
\frac{1}{k T} \frac{d T}{d t}=\frac{1}{X} \frac{d^{2} X}{d x^{2}}=\lambda
$$

As a result of applying the method of separation of variables, the PDE has reduced to two ODEs - one in x and one in t.

$$
\left.\begin{array}{l}
\frac{1}{k T} \frac{d T}{d t}=\lambda \\
\frac{1}{X} \frac{d^{2} X}{d x^{2}}=\lambda
\end{array}\right\}
$$

Values of λ that result in nontrivial solutions for X and T are called the eigenvalues, and the solutions themselves are known as the eigenfunctions. Suppose first that λ is positive: $\lambda=\alpha^{2}$. The ODE for X becomes

$$
\frac{d^{2} X}{d x^{2}}=\alpha^{2} X
$$

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

$$
X(x)=C_{1} \cosh \alpha x+C_{2} \sinh \alpha x
$$

Apply the boundary conditions now to determine C_{1} and C_{2}.

$$
\begin{aligned}
& X(0)=C_{1}=0 \\
& X(L)=C_{1} \cosh \alpha L+C_{2} \sinh \alpha L=0
\end{aligned}
$$

The second equation reduces to $C_{2} \sinh \alpha L=0$. Because hyperbolic sine is not oscillatory, C_{2} must be zero for the equation to be satisfied. This results in the trivial solution $X(x)=0$, which means there are no positive eigenvalues. Suppose secondly that λ is zero: $\lambda=0$. The ODE for X becomes

$$
\frac{d^{2} X}{d x^{2}}=0
$$

The general solution is obtained by integrating both sides with respect to x twice.

$$
X(x)=C_{3} x+C_{4}
$$

Apply the boundary conditions now to determine C_{3} and C_{4}.

$$
\begin{aligned}
& X(0)=C_{4}=0 \\
& X(L)=C_{3} L+C_{4}=0
\end{aligned}
$$

The second equation reduces to $C_{3}=0$. This results in the trivial solution $X(x)=0$, which means zero is not an eigenvalue. Suppose thirdly that λ is negative: $\lambda=-\beta^{2}$. The ODE for X becomes

$$
\frac{d^{2} X}{d x^{2}}=-\beta^{2} X
$$

The general solution is written in terms of sine and cosine.

$$
X(x)=C_{5} \cos \beta x+C_{6} \sin \beta x
$$

Apply the boundary conditions now to determine C_{5} and C_{6}.

$$
\begin{aligned}
& X(0)=C_{5}=0 \\
& X(L)=C_{5} \cos \beta L+C_{6} \sin \beta L=0
\end{aligned}
$$

The second equation reduces to $C_{6} \sin \beta L=0$. To avoid the trivial solution, we insist that $C_{6} \neq 0$. Then

$$
\begin{aligned}
\sin \beta L & =0 \\
\beta L & =n \pi, \quad n=1,2, \ldots \\
\beta_{n} & =\frac{n \pi}{L} .
\end{aligned}
$$

There are negative eigenvalues $\lambda=-n^{2} \pi^{2} / L^{2}$, and the eigenfunctions associated with them are

$$
\begin{aligned}
X(x) & =C_{5} \cos \beta x+C_{6} \sin \beta x \\
& =C_{6} \sin \beta x \quad \rightarrow \quad X_{n}(x)=\sin \frac{n \pi x}{L} .
\end{aligned}
$$

n only takes on the values it does because negative integers result in redundant values for λ. With this formula for λ, the ODE for T becomes

$$
\frac{1}{k T} \frac{d T}{d t}=-\frac{n^{2} \pi^{2}}{L^{2}}
$$

Multiply both sides by $k T$.

$$
\frac{d T}{d t}=-\frac{k n^{2} \pi^{2}}{L^{2}} T
$$

The general solution is written in terms of the exponential function.

$$
T(t)=C_{7} \exp \left(-\frac{k n^{2} \pi^{2}}{L^{2}} t\right) \quad \rightarrow \quad T_{n}(t)=\exp \left(-\frac{k n^{2} \pi^{2}}{L^{2}} t\right)
$$

According to the principle of superposition, the general solution to the PDE for u is a linear combination of $X_{n}(x) T_{n}(t)$ for each of the eigenvalues.

$$
u(x, t)=\sum_{n=1}^{\infty} B_{n} \exp \left(-\frac{k n^{2} \pi^{2}}{L^{2}} t\right) \sin \frac{n \pi x}{L}
$$

Apply the initial condition $u(x, 0)=f(x)$ now to determine B_{n}.

$$
u(x, 0)=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L}=f(x)
$$

Multiply both sides by $\sin (m \pi x / L)$, where m is a positive integer.

$$
\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L} \sin \frac{m \pi x}{L}=f(x) \sin \frac{m \pi x}{L}
$$

Integrate both sides with respect to x from 0 to L.

$$
\int_{0}^{L} \sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L} \sin \frac{m \pi x}{L} d x=\int_{0}^{L} f(x) \sin \frac{m \pi x}{L} d x
$$

Bring the constants in front.

$$
\sum_{n=1}^{\infty} B_{n} \int_{0}^{L} \sin \frac{n \pi x}{L} \sin \frac{m \pi x}{L} d x=\int_{0}^{L} f(x) \sin \frac{m \pi x}{L} d x
$$

Because the sine functions are orthogonal, the integral on the left is zero if $n \neq m$. As a result, every term in the infinite series vanishes except for the one where $n=m$.

$$
B_{n} \int_{0}^{L} \sin ^{2} \frac{n \pi x}{L} d x=\int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
$$

Evaluate the integral on the left.

$$
B_{n}\left(\frac{L}{2}\right)=\int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
$$

So then

$$
B_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x .
$$

Part (b)

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<L, t>0 \\
& u(0, t)=0 \\
& \frac{\partial u}{\partial x}(L, t)=0 \\
& u(x, 0)=f(x)
\end{aligned}
$$

The heat equation and its associated boundary conditions are linear and homogeneous, so the method of separation of variables can be applied. Assume a product solution of the form $u(x, t)=X(x) T(t)$ and substitute it into the PDE

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}} \quad \rightarrow \quad \frac{\partial}{\partial t}[X(x) T(t)]=k \frac{\partial^{2}}{\partial x^{2}}[X(x) T(t)]
$$

and the boundary conditions.

$$
\begin{array}{rlrrrrr}
u(0, t) & =0 & & \rightarrow & X(0) T(t) & =0 & \\
\frac{\partial u}{\partial x}(L, t) & =0 & & \rightarrow & & X^{\prime}(L) T(t) & =0
\end{array}
$$

Now separate variables in the PDE.

$$
X \frac{d T}{d t}=k T \frac{d^{2} X}{d x^{2}}
$$

Divide both sides by $k X(x) T(t)$. Note that the final answer for u will be the same regardless which side k is on. Constants are normally grouped with t.

$$
\underbrace{\frac{1}{k T} \frac{d T}{d t}}_{\text {function of } t}=\underbrace{\frac{1}{X} \frac{d^{2} X}{d x^{2}}}_{\text {function of } x}
$$

The only way a function of t can be equal to a function of x is if both are equal to a constant λ.

$$
\frac{1}{k T} \frac{d T}{d t}=\frac{1}{X} \frac{d^{2} X}{d x^{2}}=\lambda
$$

As a result of applying the method of separation of variables, the PDE has reduced to two ODEs - one in x and one in t.

$$
\left.\begin{array}{l}
\frac{1}{k T} \frac{d T}{d t}=\lambda \\
\frac{1}{X} \frac{d^{2} X}{d x^{2}}=\lambda
\end{array}\right\}
$$

Values of λ that result in nontrivial solutions for X and T are called the eigenvalues, and the solutions themselves are known as the eigenfunctions. Suppose first that λ is positive: $\lambda=\alpha^{2}$. The ODE for X becomes

$$
\frac{d^{2} X}{d x^{2}}=\alpha^{2} X
$$

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

$$
X(x)=C_{1} \cosh \alpha x+C_{2} \sinh \alpha x
$$

Take a derivative with respect to x.

$$
X^{\prime}(x)=\alpha\left(C_{1} \sinh \alpha x+C_{2} \cosh \alpha x\right)
$$

Apply the boundary conditions now to determine C_{1} and C_{2}.

$$
\begin{aligned}
X(0) & =C_{1}=0 \\
X^{\prime}(L) & =\alpha\left(C_{1} \sinh \alpha L+C_{2} \cosh \alpha L\right)=0
\end{aligned}
$$

The second equation reduces to $C_{2} \alpha \cosh \alpha L=0$. Because no nonzero value of α satisfies this equation, C_{2} must be zero. This results in the trivial solution $X(x)=0$, which means there are no positive eigenvalues. Suppose secondly that λ is zero: $\lambda=0$. The ODE for X becomes

$$
\frac{d^{2} X}{d x^{2}}=0
$$

The general solution is obtained by integrating both sides with respect to x twice.

$$
\frac{d X}{d x}=C_{3}
$$

Apply the boundary conditions at $x=L$ now.

$$
X^{\prime}(L)=C_{3}=0
$$

Consequently,

$$
\frac{d X}{d x}=0 .
$$

Integrate both sides with respect to x once more.

$$
X(x)=C_{4}
$$

Apply the boundary conditions at $x=0$ now.

$$
X(0)=C_{4}=0
$$

The trivial solution $X(x)=0$ is obtained, so zero is not an eigenvalue. Suppose thirdly that λ is negative: $\lambda=-\beta^{2}$. The ODE for X becomes

$$
\frac{d^{2} X}{d x^{2}}=-\beta^{2} X
$$

The general solution is written in terms of sine and cosine.

$$
X(x)=C_{5} \cos \beta x+C_{6} \sin \beta x
$$

Take a derivative of it with respect to x.

$$
X^{\prime}(x)=\beta\left(-C_{5} \sin \beta x+C_{6} \cos \beta x\right)
$$

Apply the boundary conditions now to determine C_{5} and C_{6}.

$$
\begin{aligned}
X(0) & =C_{5}=0 \\
X^{\prime}(L) & =\beta\left(-C_{5} \sin \beta L+C_{6} \cos \beta L\right)=0
\end{aligned}
$$

The second equation reduces to $C_{6} \beta \cos \beta L=0$. To avoid the trivial solution, we insist that $C_{6} \neq 0$. Then

$$
\begin{aligned}
\cos \beta L & =0 \\
\beta L & =\frac{1}{2}(2 n-1) \pi, \quad n=1,2, \ldots \\
\beta_{n} & =\frac{1}{2 L}(2 n-1) \pi .
\end{aligned}
$$

There are negative eigenvalues $\lambda=-(2 n-1)^{2} \pi^{2} / 4 L^{2}$, and the eigenfunctions associated with them are

$$
\begin{aligned}
X(x) & =C_{5} \cos \beta x+C_{6} \sin \beta x \\
& =C_{6} \sin \beta x \quad \rightarrow \quad X_{n}(x)=\sin \frac{(2 n-1) \pi x}{2 L} .
\end{aligned}
$$

n only takes on the values it does because negative integers result in redundant values for λ. With this formula for λ, the ODE for T becomes

$$
\frac{1}{k T} \frac{d T}{d t}=-\frac{(2 n-1)^{2} \pi^{2}}{4 L^{2}}
$$

Multiply both sides by $k T$.

$$
\frac{d T}{d t}=-k \frac{(2 n-1)^{2} \pi^{2}}{4 L^{2}} T
$$

The general solution is written in terms of the exponential function.

$$
T(t)=C_{7} \exp \left(-k \frac{(2 n-1)^{2} \pi^{2}}{4 L^{2}} t\right) \quad \rightarrow \quad T_{n}(t)=\exp \left(-\frac{k(2 n-1)^{2} \pi^{2}}{4 L^{2}} t\right)
$$

According to the principle of superposition, the general solution to the PDE for u is a linear combination of $X_{n}(x) T_{n}(t)$ over all the eigenvalues.

$$
u(x, t)=\sum_{n=1}^{\infty} B_{n} \exp \left(-\frac{k(2 n-1)^{2} \pi^{2}}{4 L^{2}} t\right) \sin \frac{(2 n-1) \pi x}{2 L}
$$

Now use the initial condition $u(x, 0)=f(x)$ to determine A_{n}.

$$
u(x, 0)=\sum_{n=1}^{\infty} B_{n} \sin \frac{(2 n-1) \pi x}{2 L}=f(x)
$$

Multiply both sides by $\sin [(2 m-1) \pi x / 2 L]$, where m is an integer,

$$
\sum_{n=1}^{\infty} B_{n} \sin \frac{(2 n-1) \pi x}{2 L} \sin \frac{(2 m-1) \pi x}{2 L}=f(x) \sin \frac{(2 m-1) \pi x}{2 L}
$$

and then integrate both sides with respect to x from 0 to L.

$$
\int_{0}^{L} \sum_{n=1}^{\infty} B_{n} \sin \frac{(2 n-1) \pi x}{2 L} \sin \frac{(2 m-1) \pi x}{2 L} d x=\int_{0}^{L} f(x) \sin \frac{(2 m-1) \pi x}{2 L} d x
$$

Bring the constants in front of the integral on the left.

$$
\sum_{n=1}^{\infty} B_{n} \int_{0}^{L} \sin \frac{(2 n-1) \pi x}{2 L} \sin \frac{(2 m-1) \pi x}{2 L} d x=\int_{0}^{L} f(x) \sin \frac{(2 m-1) \pi x}{2 L} d x
$$

The sine functions are orthogonal, so the integral on the left is zero if $n \neq m$. As a result, every term in the infinite series vanishes except for the $n=m$ one.

$$
B_{n} \int_{0}^{L} \sin ^{2} \frac{(2 n-1) \pi x}{2 L} d x=\int_{0}^{L} f(x) \sin \frac{(2 n-1) \pi x}{2 L} d x
$$

Evaluate the integral on the left side.

$$
B_{n}\left(\frac{L}{2}\right)=\int_{0}^{L} f(x) \sin \frac{(2 n-1) \pi x}{2 L} d x
$$

Therefore,

$$
B_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{(2 n-1) \pi x}{2 L} d x .
$$

Part (c)

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<L, t>0 \\
& \frac{\partial u}{\partial x}(0, t)=0 \\
& u(L, t)=0 \\
& u(x, 0)=f(x)
\end{aligned}
$$

The heat equation and its associated boundary conditions are linear and homogeneous, so the method of separation of variables can be applied. Assume a product solution of the form $u(x, t)=X(x) T(t)$ and substitute it into the PDE

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}} \quad \rightarrow \quad \frac{\partial}{\partial t}[X(x) T(t)]=k \frac{\partial^{2}}{\partial x^{2}}[X(x) T(t)]
$$

and the boundary conditions.

$$
\begin{array}{rlrlll}
\frac{\partial u}{\partial x}(0, t)=0 & & & X^{\prime}(0) T(t)=0 & & \rightarrow \\
u(L, t) & =0 & \rightarrow & X(L) T(t)=0 & & \rightarrow
\end{array}
$$

Now separate variables in the PDE.

$$
X \frac{d T}{d t}=k T \frac{d^{2} X}{d x^{2}}
$$

Divide both sides by $k X(x) T(t)$. Note that the final answer for u will be the same regardless which side k is on. Constants are normally grouped with t.

$$
\underbrace{\frac{1}{k T} \frac{d T}{d t}}_{\text {function of } t}=\underbrace{\frac{1}{X} \frac{d^{2} X}{d x^{2}}}_{\text {function of } x}
$$

The only way a function of t can be equal to a function of x is if both are equal to a constant λ.

$$
\frac{1}{k T} \frac{d T}{d t}=\frac{1}{X} \frac{d^{2} X}{d x^{2}}=\lambda
$$

As a result of applying the method of separation of variables, the PDE has reduced to two ODEs - one in x and one in t.

$$
\left.\begin{array}{l}
\frac{1}{k T} \frac{d T}{d t}=\lambda \\
\frac{1}{X} \frac{d^{2} X}{d x^{2}}=\lambda
\end{array}\right\}
$$

Values of λ that result in nontrivial solutions for X and T are called the eigenvalues, and the solutions themselves are known as the eigenfunctions. Suppose first that λ is positive: $\lambda=\alpha^{2}$. The ODE for X becomes

$$
\frac{d^{2} X}{d x^{2}}=\alpha^{2} X
$$

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

$$
X(x)=C_{1} \cosh \alpha x+C_{2} \sinh \alpha x
$$

Take a derivative with respect to x.

$$
X^{\prime}(x)=\alpha\left(C_{1} \sinh \alpha x+C_{2} \cosh \alpha x\right)
$$

Apply the boundary conditions now to determine C_{1} and C_{2}.

$$
\begin{aligned}
& X^{\prime}(0)=\alpha\left(C_{2}\right)=0 \\
& X(L)=C_{1} \cosh \alpha L+C_{2} \sinh \alpha L=0
\end{aligned}
$$

The first equation implies that $C_{2}=0$, so the second equation reduces to $C_{1} \cosh \alpha L=0$.
Because hyperbolic cosine is not oscillatory, C_{1} must be zero for the equation to be satisfied. This results in the trivial solution $X(x)=0$, which means there are no positive eigenvalues. Suppose secondly that λ is zero: $\lambda=0$. The ODE for X becomes

$$
\frac{d^{2} X}{d x^{2}}=0
$$

The general solution is obtained by integrating both sides with respect to x twice.

$$
\frac{d X}{d x}=C_{3}
$$

Apply the boundary conditions at $x=0$ now.

$$
X^{\prime}(0)=C_{3}=0
$$

Consequently,

$$
\frac{d X}{d x}=0
$$

Integrate both sides with respect to x once more.

$$
X(x)=C_{4}
$$

Apply the boundary conditions at $x=L$ now.

$$
X(L)=C_{4}=0
$$

The trivial solution $X(x)=0$ is obtained, so zero is not an eigenvalue. Suppose thirdly that λ is negative: $\lambda=-\beta^{2}$. The ODE for X becomes

$$
\frac{d^{2} X}{d x^{2}}=-\beta^{2} X
$$

The general solution is written in terms of sine and cosine.

$$
X(x)=C_{5} \cos \beta x+C_{6} \sin \beta x
$$

Take a derivative of it with respect to x.

$$
X^{\prime}(x)=\beta\left(-C_{5} \sin \beta x+C_{6} \cos \beta x\right)
$$

Apply the boundary conditions now to determine C_{5} and C_{6}.

$$
\begin{aligned}
& X^{\prime}(0)=\beta\left(C_{6}\right)=0 \\
& X(L)=C_{5} \cos \beta L+C_{6} \sin \beta L=0
\end{aligned}
$$

The first equation implies that $C_{6}=0$, so the second equation reduces to $C_{5} \cos \beta L=0$. To avoid the trivial solution, we insist that $C_{5} \neq 0$. Then

$$
\begin{aligned}
\cos \beta L & =0 \\
\beta L & =\frac{1}{2}(2 n-1) \pi, \quad n=1,2, \ldots \\
\beta_{n} & =\frac{1}{2 L}(2 n-1) \pi .
\end{aligned}
$$

There are negative eigenvalues $\lambda=-(2 n-1)^{2} \pi^{2} / 4 L^{2}$, and the eigenfunctions associated with them are

$$
\begin{aligned}
X(x) & =C_{5} \cos \beta x+C_{6} \sin \beta x \\
& =C_{5} \cos \beta x \quad \rightarrow \quad X_{n}(x)=\cos \frac{(2 n-1) \pi x}{2 L}
\end{aligned}
$$

n only takes on the values it does because negative integers result in redundant values for λ. With this formula for λ, the ODE for T becomes

$$
\frac{1}{k T} \frac{d T}{d t}=-\frac{(2 n-1)^{2} \pi^{2}}{4 L^{2}}
$$

Multiply both sides by $k T$.

$$
\frac{d T}{d t}=-k \frac{(2 n-1)^{2} \pi^{2}}{4 L^{2}} T
$$

The general solution is written in terms of the exponential function.

$$
T(t)=C_{7} \exp \left(-k \frac{(2 n-1)^{2} \pi^{2}}{4 L^{2}} t\right) \quad \rightarrow \quad T_{n}(t)=\exp \left(-\frac{k(2 n-1)^{2} \pi^{2}}{4 L^{2}} t\right)
$$

According to the principle of superposition, the general solution to the PDE for u is a linear combination of $X_{n}(x) T_{n}(t)$ over all the eigenvalues.

$$
u(x, t)=\sum_{n=1}^{\infty} A_{n} \exp \left(-\frac{k(2 n-1)^{2} \pi^{2}}{4 L^{2}} t\right) \cos \frac{(2 n-1) \pi x}{2 L}
$$

Now use the initial condition $u(x, 0)=f(x)$ to determine A_{n}.

$$
u(x, 0)=\sum_{n=1}^{\infty} A_{n} \cos \frac{(2 n-1) \pi x}{2 L}=f(x)
$$

Multiply both sides by $\cos [(2 m-1) \pi x / 2 L]$, where m is an integer,

$$
\sum_{n=1}^{\infty} A_{n} \cos \frac{(2 n-1) \pi x}{2 L} \cos \frac{(2 m-1) \pi x}{2 L}=f(x) \cos \frac{(2 m-1) \pi x}{2 L}
$$

and then integrate both sides with respect to x from 0 to L.

$$
\int_{0}^{L} \sum_{n=1}^{\infty} A_{n} \cos \frac{(2 n-1) \pi x}{2 L} \cos \frac{(2 m-1) \pi x}{2 L} d x=\int_{0}^{L} f(x) \cos \frac{(2 m-1) \pi x}{2 L} d x
$$

Bring the constants in front of the integral on the left.

$$
\sum_{n=1}^{\infty} A_{n} \int_{0}^{L} \cos \frac{(2 n-1) \pi x}{2 L} \cos \frac{(2 m-1) \pi x}{2 L} d x=\int_{0}^{L} f(x) \cos \frac{(2 m-1) \pi x}{2 L} d x
$$

The cosine functions are orthogonal, so the integral on the left is zero if $n \neq m$. As a result, every term in the infinite series vanishes except for the $n=m$ one.

$$
A_{n} \int_{0}^{L} \cos ^{2} \frac{(2 n-1) \pi x}{2 L}=\int_{0}^{L} f(x) \cos \frac{(2 n-1) \pi x}{2 L} d x
$$

Evaluate the integral on the left side.

$$
A_{n}\left(\frac{L}{2}\right)=\int_{0}^{L} f(x) \cos \frac{(2 n-1) \pi x}{2 L} d x
$$

Therefore,

$$
A_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{(2 n-1) \pi x}{2 L} d x .
$$

Part (d)

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<L, t>0 \\
& \frac{\partial u}{\partial x}(0, t)=0 \\
& \frac{\partial u}{\partial x}(L, t)=0 \\
& u(x, 0)=f(x)
\end{aligned}
$$

The heat equation and its associated boundary conditions are linear and homogeneous, so the method of separation of variables can be applied. Assume a product solution of the form $u(x, t)=X(x) T(t)$ and substitute it into the PDE

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}} \quad \rightarrow \quad \frac{\partial}{\partial t}[X(x) T(t)]=k \frac{\partial^{2}}{\partial x^{2}}[X(x) T(t)]
$$

and the boundary conditions.

$$
\begin{array}{lllll}
\frac{\partial u}{\partial x}(0, t)=0 & \rightarrow & X^{\prime}(0) T(t)=0 & \rightarrow & X^{\prime}(0)=0 \\
\frac{\partial u}{\partial x}(L, t)=0 & \rightarrow & X^{\prime}(L) T(t)=0 & \rightarrow & X^{\prime}(L)=0
\end{array}
$$

Now separate variables in the PDE.

$$
X \frac{d T}{d t}=k T \frac{d^{2} X}{d x^{2}}
$$

Divide both sides by $k X(x) T(t)$. Note that the final answer for u will be the same regardless which side k is on. Constants are normally grouped with t.

$$
\underbrace{\frac{1}{k T} \frac{d T}{d t}}_{\text {function of } t}=\underbrace{\frac{1}{X} \frac{d^{2} X}{d x^{2}}}_{\text {function of } x}
$$

The only way a function of t can be equal to a function of x is if both are equal to a constant λ.

$$
\frac{1}{k T} \frac{d T}{d t}=\frac{1}{X} \frac{d^{2} X}{d x^{2}}=\lambda
$$

As a result of applying the method of separation of variables, the PDE has reduced to two ODEs - one in x and one in t.

$$
\left.\begin{array}{l}
\frac{1}{k T} \frac{d T}{d t}=\lambda \\
\frac{1}{X} \frac{d^{2} X}{d x^{2}}=\lambda
\end{array}\right\}
$$

Values of λ that result in nontrivial solutions for X and T are called the eigenvalues, and the solutions themselves are known as the eigenfunctions. Suppose first that λ is positive: $\lambda=\alpha^{2}$. The ODE for X becomes

$$
\frac{d^{2} X}{d x^{2}}=\alpha^{2} X
$$

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

$$
X(x)=C_{1} \cosh \alpha x+C_{2} \sinh \alpha x
$$

Take a derivative with respect to x.

$$
X^{\prime}(x)=\alpha\left(C_{1} \sinh \alpha x+C_{2} \cosh \alpha x\right)
$$

Apply the boundary conditions now to determine C_{1} and C_{2}.

$$
\begin{aligned}
& X^{\prime}(0)=\alpha\left(C_{2}\right)=0 \\
& X^{\prime}(L)=\alpha\left(C_{1} \sinh \alpha L+C_{2} \cosh \alpha L\right)=0
\end{aligned}
$$

The first equation implies that $C_{2}=0$, so the second equation reduces to $C_{1} \alpha \sinh \alpha L=0$. Because hyperbolic sine is not oscillatory, C_{1} must be zero for the equation to be satisfied. This results in the trivial solution $X(x)=0$, which means there are no positive eigenvalues. Suppose secondly that λ is zero: $\lambda=0$. The ODE for X becomes

$$
\frac{d^{2} X}{d x^{2}}=0
$$

The general solution is obtained by integrating both sides with respect to x twice.

$$
\frac{d X}{d x}=C_{3}
$$

Apply the boundary conditions now.

$$
\begin{aligned}
X^{\prime}(0) & =C_{3}=0 \\
X^{\prime}(L) & =C_{3}=0
\end{aligned}
$$

Consequently,

$$
\frac{d X}{d x}=0
$$

Integrate both sides with respect to x once more.

$$
X(x)=C_{4}
$$

Zero is an eigenvalue because $X(x)$ is not zero. The eigenfunction associated with it is $X_{0}(x)=1$. Solve the ODE for T now with $\lambda=0$.

$$
\frac{d T}{d t}=0 \quad \rightarrow \quad T_{0}(t)=\text { constant }
$$

Suppose thirdly that λ is negative: $\lambda=-\beta^{2}$. The ODE for X becomes

$$
\frac{d^{2} X}{d x^{2}}=-\beta^{2} X
$$

The general solution is written in terms of sine and cosine.

$$
X(x)=C_{5} \cos \beta x+C_{6} \sin \beta x
$$

Take a derivative of it with respect to x.

$$
X^{\prime}(x)=\beta\left(-C_{5} \sin \beta x+C_{6} \cos \beta x\right)
$$

Apply the boundary conditions now to determine C_{5} and C_{6}.

$$
\begin{aligned}
& X^{\prime}(0)=\beta\left(C_{6}\right)=0 \\
& X^{\prime}(L)=\beta\left(-C_{5} \sin \beta L+C_{6} \cos \beta L\right)=0
\end{aligned}
$$

The first equation implies that $C_{6}=0$, so the second equation reduces to $-C_{5} \beta \sin \beta L=0$. To avoid the trivial solution, we insist that $C_{5} \neq 0$. Then

$$
\begin{aligned}
-\beta \sin \beta L & =0 \\
\sin \beta L & =0 \\
\beta L & =n \pi, \quad n=1,2, \ldots \\
\beta_{n} & =\frac{n \pi}{L} .
\end{aligned}
$$

There are negative eigenvalues $\lambda=-n^{2} \pi^{2} / L^{2}$, and the eigenfunctions associated with them are

$$
\begin{aligned}
X(x) & =C_{5} \cos \beta x+C_{6} \sin \beta x \\
& =C_{5} \cos \beta x \quad \rightarrow \quad X_{n}(x)=\cos \frac{n \pi x}{L} .
\end{aligned}
$$

n only takes on the values it does because negative integers result in redundant values for λ. With this formula for λ, the ODE for T becomes

$$
\frac{1}{k T} \frac{d T}{d t}=-\frac{n^{2} \pi^{2}}{L^{2}}
$$

Multiply both sides by $k T$.

$$
\frac{d T}{d t}=-\frac{k n^{2} \pi^{2}}{L^{2}} T
$$

The general solution is written in terms of the exponential function.

$$
T(t)=C_{7} \exp \left(-\frac{k n^{2} \pi^{2}}{L^{2}} t\right) \quad \rightarrow \quad T_{n}(t)=\exp \left(-\frac{k n^{2} \pi^{2}}{L^{2}} t\right)
$$

According to the principle of superposition, the general solution to the PDE for u is a linear combination of $X_{n}(x) T_{n}(t)$ over all the eigenvalues.

$$
u(x, t)=A_{0}+\sum_{n=1}^{\infty} A_{n} \exp \left(-\frac{k n^{2} \pi^{2}}{L^{2}} t\right) \cos \frac{n \pi x}{L}
$$

Use the initial condition $u(x, 0)=f(x)$ to determine A_{0} and A_{n}.

$$
\begin{equation*}
u(x, 0)=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{L}=f(x) \tag{1}
\end{equation*}
$$

To find A_{0}, integrate both sides of equation (1) with respect to x from 0 to L.

$$
\int_{0}^{L}\left(A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{L}\right) d x=\int_{0}^{L} f(x) d x
$$

Split up the integral on the left and bring the constants in front.

$$
\begin{gathered}
A_{0} \int_{0}^{L} d x+\sum_{n=1}^{\infty} A_{n} \underbrace{\int_{0}^{L} \cos \frac{n \pi x}{L} d x}_{=0}=\int_{0}^{L} f(x) d x \\
A_{0} L=\int_{0}^{L} f(x) d x
\end{gathered}
$$

So then

$$
A_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x
$$

To find A_{n}, multiply both sides of equation (1) by $\cos (m \pi x / L)$, where m is an integer,

$$
A_{0} \cos \frac{m \pi x}{L}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{L} \cos \frac{m \pi x}{L}=f(x) \cos \frac{m \pi x}{L}
$$

and then integrate both sides with respect to x from 0 to L.

$$
\int_{0}^{L}\left(A_{0} \cos \frac{m \pi x}{L}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{L} \cos \frac{m \pi x}{L}\right) d x=\int_{0}^{L} f(x) \cos \frac{m \pi x}{L} d x
$$

Split up the integral on the left and bring the constants in front.

$$
A_{0} \underbrace{\int_{0}^{L} \cos \frac{m \pi x}{L} d x}_{=0}+\sum_{n=1}^{\infty} A_{n} \int_{0}^{L} \cos \frac{n \pi x}{L} \cos \frac{m \pi x}{L} d x=\int_{0}^{L} f(x) \cos \frac{m \pi x}{L} d x
$$

Because the cosine functions are orthogonal, the second integral on the left is zero if $n \neq m$. As a result, every term in the infinite series vanishes except for the $n=m$ one.

$$
\begin{gathered}
A_{n} \int_{0}^{L} \cos ^{2} \frac{n \pi x}{L} d x=\int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x \\
A_{n}\left(\frac{L}{2}\right)=\int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x
\end{gathered}
$$

So then

$$
A_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x
$$

